Difficulty Level: Intermediate
In this tutorial, you will learn how to set up the ESP32-CAM module to perform object detection using OpenCV. This project combines the power of the ESP32 microcontroller with the image processing capabilities of OpenCV.
1. Connect the ESP32-CAM to your FTDI programmer:
2. Open the Arduino IDE and install the necessary board libraries for ESP32.
3. Load the following example code to set up the camera:
#include "esp_camera.h" void setup() { Serial.begin(115200); camera_config_t config; config.ledc_channel = LEDC_CHANNEL; config.ledc_freq = 5000; config.ledc_timer = LEDC_TIMER; config.pin_d0 = 0; // Adjust as necessary for your board config.pin_d1 = 26; // Adjust as necessary config.pin_d2 = 27; // Adjust as necessary config.pin_d3 = 25; // Adjust as necessary config.pin_d4 = 33; // Adjust as necessary config.pin_d5 = 32; // Adjust as necessary config.pin_d6 = 35; // Adjust as necessary config.pin_d7 = 34; // Adjust as necessary config.pin_xclk = 0; // Adjust as necessary config.pin_pclk = 22; // Adjust as necessary config.pin_vsync = 25; // Adjust as necessary config.pin_href = 23; // Adjust as necessary config.pin_sscb_sda = 26; // Adjust as necessary config.pin_sscb_scl = 27; // Adjust as necessary config.pin_pwdn = 32; // Adjust as necessary config.pin_reset = -1; // Reset pin config.xclk_freq_hz = 20000000; config.pixel_format = PIXFORMAT_JPEG; // Initialize the camera esp_err_t err = esp_camera_init(&config); } void loop() { // Your code to capture images and send them to OpenCV }
1. Make sure you have OpenCV installed on your computer. You can install it via pip:
pip install opencv-python
2. Use the following Python script to capture video from the ESP32-CAM and perform object detection:
import cv2 import numpy as np url = 'http:///stream' # Replace with your ESP32-CAM IP cap = cv2.VideoCapture(url) while True: ret, frame = cap.read() if not ret: break # Perform object detection (e.g., using Haar cascades) # haar_cascade = cv2.CascadeClassifier('path/to/haarcascade.xml') # objects = haar_cascade.detectMultiScale(frame, scaleFactor=1.1, minNeighbors=5) # Display the results cv2.imshow('Object Detection', frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
In this section, we explain the code:
By following this tutorial, you have learned how to set up an ESP32-CAM for object detection using OpenCV. This integration allows you to create powerful IoT applications that utilize computer vision capabilities.
If you have any questions or inquiries, feel free to reach out to us at Microautomation.no@icloud.com .
Follow our Socials for the newest updates!