Components Required
- Microcontroller: ESP32-CAM
- Camera Module: Integrated camera on the ESP32-CAM
- Power Supply: USB or battery pack
- Optional: LED for indication
Overview
This project aims to implement a face detection system using the ESP32-CAM, which can capture images and process them for face detection using a pre-trained machine learning model.
No Ads Available.
Steps to Implement
1. Setup Environment
- Install Arduino IDE: Ensure you have the latest version of the Arduino IDE installed.
- ESP32 Board Support: Add the ESP32 board to your Arduino IDE via the Board Manager.
2. Connect ESP32-CAM
Connect the ESP32-CAM to your computer using a USB-to-serial adapter. Connect the pins as follows:
- GND to GND
- 5V to VCC
- TX to RX
- RX to TX
- GPIO0 to GND (for programming mode)
3. Upload Code
Use the following sample code to implement face detection:
#include "esp_camera.h"
#include
const char* ssid = "YOUR_SSID";
const char* password = "YOUR_PASSWORD";
void setup() {
Serial.begin(115200);
camera_config_t config;
config.ledc_channel = LEDC_CHANNEL;
config.ledc_timer = LEDC_TIMER;
config.pin_d0 = 32;
config.pin_d1 = 33;
config.pin_d2 = 34;
config.pin_d3 = 35;
config.pin_d4 = 36;
config.pin_d5 = 37;
config.pin_d6 = 38;
config.pin_d7 = 39;
config.pin_xclk = 0;
config.pin_pclk = 22;
config.pin_vsync = 25;
config.pin_href = 23;
config.pin_sscb_sda = 21;
config.pin_sscb_scl = 26;
config.pin_pwdn = 32;
config.pin_reset = -1;
config.xclk_freq_hz = 20000000;
config.frame_size = FRAMESIZE_SVGA;
config.jpeg_quality = 12;
config.fb_count = 2;
// Initialize the camera
esp_err_t err = esp_camera_init(&config);
if (err != ESP_OK) {
Serial.println("Camera init failed");
return;
}
// Connect to WiFi
WiFi.begin(ssid, password);
while (WiFi.status() != WL_CONNECTED) {
delay(1000);
Serial.println("Connecting to WiFi...");
}
Serial.println("Connected to WiFi");
}
void loop() {
// Capture an image
camera_fb_t *fb = esp_camera_fb_get();
if (!fb) {
Serial.println("Camera capture failed");
return;
}
// Process image for face detection here (ML model)
// ...
// Return the frame buffer
esp_camera_fb_return(fb);
}
4. Machine Learning Model
Integrate a pre-trained face detection model (e.g., Haar Cascades or MobileNet) into the code to process the captured images and detect faces.
5. Testing
Power the ESP32-CAM and access the video stream through your web browser using the IP address provided in the serial monitor.
Conclusion
You have successfully implemented a face detection system using the ESP32-CAM and machine learning. This system can be expanded with more functionalities such as notifications or integration with other IoT devices.