working-with-code-experiments

Components Required

Overview

This project aims to implement a face detection system using the ESP32-CAM, which can capture images and process them for face detection using a pre-trained machine learning model.

No Ads Available.

Steps to Implement

1. Setup Environment

2. Connect ESP32-CAM

Connect the ESP32-CAM to your computer using a USB-to-serial adapter. Connect the pins as follows:

3. Upload Code

Use the following sample code to implement face detection:


#include "esp_camera.h"
#include 

const char* ssid = "YOUR_SSID";
const char* password = "YOUR_PASSWORD";

void setup() {
    Serial.begin(115200);
    camera_config_t config;
    config.ledc_channel = LEDC_CHANNEL;
    config.ledc_timer = LEDC_TIMER;
    config.pin_d0 = 32;
    config.pin_d1 = 33;
    config.pin_d2 = 34;
    config.pin_d3 = 35;
    config.pin_d4 = 36;
    config.pin_d5 = 37;
    config.pin_d6 = 38;
    config.pin_d7 = 39;
    config.pin_xclk = 0;
    config.pin_pclk = 22;
    config.pin_vsync = 25;
    config.pin_href = 23;
    config.pin_sscb_sda = 21;
    config.pin_sscb_scl = 26;
    config.pin_pwdn = 32;
    config.pin_reset = -1;
    config.xclk_freq_hz = 20000000;
    config.frame_size = FRAMESIZE_SVGA;
    config.jpeg_quality = 12;
    config.fb_count = 2;

    // Initialize the camera
    esp_err_t err = esp_camera_init(&config);
    if (err != ESP_OK) {
        Serial.println("Camera init failed");
        return;
    }

    // Connect to WiFi
    WiFi.begin(ssid, password);
    while (WiFi.status() != WL_CONNECTED) {
        delay(1000);
        Serial.println("Connecting to WiFi...");
    }
    Serial.println("Connected to WiFi");
}

void loop() {
    // Capture an image
    camera_fb_t *fb = esp_camera_fb_get();
    if (!fb) {
        Serial.println("Camera capture failed");
        return;
    }

    // Process image for face detection here (ML model)
    // ...

    // Return the frame buffer
    esp_camera_fb_return(fb);
}
        

4. Machine Learning Model

Integrate a pre-trained face detection model (e.g., Haar Cascades or MobileNet) into the code to process the captured images and detect faces.

5. Testing

Power the ESP32-CAM and access the video stream through your web browser using the IP address provided in the serial monitor.

Conclusion

You have successfully implemented a face detection system using the ESP32-CAM and machine learning. This system can be expanded with more functionalities such as notifications or integration with other IoT devices.

Contact Us

If you have any questions or inquiries, feel free to reach out to us at Microautomation.no@icloud.com .

Follow our Socials for the newest updates!